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1. INTRODUCTION

1.1 Preliminaries

For the estimation of the mean of a finite population from

samples drawn with equal probability and without replacement the

sample mean is almost universally recommended. Indeed, it has been

shown by Hartley and Rao [1968] and independently in a somewhat

different context by Royall [1968] that among the class of estimators

described as "scale load estimators" it is the only one which is

unbiased uniformly in the parameters of the population. Accordingly,

among the class of uniformly unbiased estimators the sample mean

is the only admissible competitor and is, therefore, "best" in

any competition including that of minimium variance estimators.

Because the arithmetic mean of a random sample is always

unbiased and because it has a variance that is a function of only

the population variance and the sample size, it is a safe estimator.

That is, even when there is no prior knowledge of the population

distribution one still can be sure of a predictably "good" estimator.

However, there are many occasions when sufficient prior knowledge

of the population is available to limit the class of populations to

those :or which the population mean may be more adequately estimated

by some statistic other than the sample mean.

The citations on the following pages will follow the style
of Biometrika.
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1,2 Objecttyes

When the situation arises that the population being sampled

is known, a priori, to have characteristics that place it in a more

restricted category, the question rightly may be asked as to whether

the condition of uniform unbiasedness might not be dropped and

the bias and variance be combined into a single measure of mean

square error. The purpose of this research is to investigate a

class of estimators, which shall be called *root estimators!, that

will usually have smaller mean square error than the arithmetic

mean for certain classes of populations.

Root estimators, in general, are of the form

m nl (yi) 1
y* JE C i l

i-i-

The particular "root estimators" which will be investigated are:

(1) The square-root estimator, (Section II), y - ClY + C22
1/2Where ui 1 Y/ , which may be useful in the estimation

of the means of populations which consist of positive

quantities only;

(2) The cube-root estimator, (Section III), y " (l-C)y+ Cv3

1/3
where vi - yi , which may be useful in the estimation

of the means of populations which consist of both positive

and negative quantities.
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I
Each estimator is to be a weighted sum of the mean of the observa-

cin n tersecie~th th
tions and the respective thpower of the mean of the j roots

of the observations. It is the values of the Ci, the weighting

constants, that are to be optimized.

1.3 Procedure

For a specific known population of values the distribution

of the appropriate roots of these values can be determined mathe-

matically through well known and established procedures. It is

then possible to express y in terms of the k statistics of this root

distribution and through it to determine the bias and error mean

square of the estimator in terms of the ic parameters of the root

distribution. It is then possible to investigate the properties

of the -root estimator for various sample sizes.

In many practical sampling applications the sampler does not

know the exact form of the population distribution but does know

certain facts about it. In particular, he may know that all values

are positive and have a large positive skewness. In another case,

he may know that most values are zero with only an occasional

deviation from zero which may be either positive or negative. In

order to make a "root estimator" useful in such applications it

must be determined:

(1) If there is a broad class of population distributions

for which a particular value of C will substantially
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reduce the mean square error;

(2) How much lose of efficiency the estimator will suffer

if the population sampled is not in this class.

These two goals will be investigated through mathematical

models, deriving the appropriate relationships and then applying

them to various standard probability distributions that range

across a broad class of population distributions. Graphs of twelve

of these distributions are shown in Figure 1. The results will

then be tested on real population data for verification of

practicality.
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2. THE SQUARE-ROOT ESTIMATOR

2.1 Introduction

One of the most common types of populations encountered is

made up of values that are all positive. Such distributions are

apt to be skewed positively because they are bounded at the lower

end but not at the upper end, or for other reasons. It is in such

a class of distributions that the square-root estimator will be

tested.

The square-root transformation has a greater effect the

further a number is from 1. It, therefore, has the effect of reducing

the amount of positive skewness while reducing the variance.

Negatively skewed distributions, on the othe, hand, will have the

skewness emphasized by the square-root transformation.

The square-root estimator will be defined, in general, by

-2 -2y- Cly + C  , or if C1 + C2 ml,by y - (l-C)y + Cu . It would

be more appropriate to start with a discussion of the general

case, but for reasons of clarity the general case will be discussed

in Section 2.3.

2.2 The Square-Root Eatimator of the

Form y (I-C)y + C

2.2.1 Definitions

a. Yi, i * 1, ... , n; a set of observed values picked with
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equal probability and without replacement from a

population of all positive quantities.

- i n
b. y - XZ y; the sample mean.

1

_ N

c. Y = Z y,; the population mean.
1

d. V(y) = E(y-Y)2; the variance of the y distribution.

e. ui 1/2

- 1 n
u u n-- 1: ui.
fn 1

A- -2
g. y - (l-C)y + Cu ; the square root estimator.

h. C; the weighting factor which is to be determined.

* 2 A

i. V(y) - E(y - E(y)] ; variance of y.

J. B(y) - E(y-Y); bias of y as an estimator of Y.

A -A
2  

AA2

k. M4S(y) - E(y-Y) - V(y) + [B(y)]

R. •.- (Y); efficiency ratio of EKS(y) over VCy).

m. k statistics [Kendall and Stuart, Vol. 1, p. 280]

1 i n(1) kI E U, n 1
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2!

X u(2) :c2 uu"-.-.u-(u3

(3 ) k 3 - (, k- j) A 2 ) I

(4)Ic4  12 2
(4) {(n 3 +n 2 )S4 - 4(n 2 .n)S3 S1 _ 3(n -n)S2(4) T4 3

+ l2nS2 S2 - 6S4 1

S - r u * n n(n-l)(n-2)(n-3)
i-1

The use of k statistics is desirable because in each case

E(ki) - Ki; that is, the value one would attain if n - N. The

desirability is further enhanced by the availability of the various

relationships which have been worked out by Wishart (1952].

2.2.2 Optimizing the square-root estimator for finite populations

The great advantage of using y - (1-C)y + Cu is that y

can be expressed in terms of k statistics of the square roots (ui),

na 2 1 2 -2 +-2 n-i 2Yi um"(Zu nu) u + (--)k 2 + i . (2.2.1)

Hence,

A -1 2 2 n-1 2
y- (1-C)[(-n )k 2 + k1] + Ck1  (1-C)(--)k 2 + 1  . (2.2.2)

I ' - " l .. .. . . ' i i • l " I l = • : " " " ni ' n . . :. . . .i ' I . . . . . . . . .. . . . . . .n . . . . . .
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Nov, since we are to be estimating Y, we shall define

B(y) - E(y) -Y as the bias and determine

E~y - n-i 2

E (l).0-C)(----) E(k 2) +E(k-1)

by utilizing the relationships from Wishart [1952]. They make

E(y) - (1-C) - + E + k•)

ý:n-i 1

(.ýn 2 n2 1

K~ +~ K1K("2 11 2

N N
- £(ui.U)2 + 14(i- J~i ulu• - CK2 (1 -"-)

1 1 C1 (l

N•_ 1 rl- ui+ ' N ~u

+l 2 2: uI - CK (1--)

- u (14Z-1)i jj N(N-I) Zi jUU i 2

IN 2 2
3-1-1 1 1 N(N--l) ui+E t

"- N(N.- ) i - j-

N2
.1 2.
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CK2(l n [i.e., Y" K K: Zl

Therefore,

B(Y) m E(y) -Y -C .2(l (2.2.3)

Similarly the variances and covariances of the k statistics

can be determined.

V(k 2 ) - Elk 2 - E(k2)]2 (k) - [E(k2)] 2

Sik4 + n+1 - 2n- 4Ek 2 2 ] K2

n 4  n-i " 2 2 - N "4 N-1 K2 2

A 1 '•1]r22(2.2.4)V(k2) " [•t - K •4 + 2 V-

2- 2~ 2 [ 1 1]2 12

12 2 1 12 2E-•2 k2 + • + E k -k-? K2 + K 1 +; KK 1

n n

[' L[K + K + 2 K + Inn2 41+1K
n2 n 4 22 a-i 22 n_1) K 2 2 + -n 2 1 1 +Kl
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22 2 1 1 K K 2
+. u• •31 ~-1) K22 '+ K 2 1 J] - "2[N" 4 + 22 N- t22]

24 22 2
[N-T1 K2 2 + 211 +l ll1 - K3 1 - N--) K2 2 + K2 1 1 ]

1 2 1 1 41 1 1 1
V~k~) -~ 4 + P(--~K31 + -i)211

U-ff1 ~~11 1 ,1 1~+2 N(N-l)j-- n(N-1) K - i} K22 " (2.2.5)

2 2 2Cov(k2,k 2 ) - E(k 1k 2) - E(k1) E(k 2 )

1 23 . 1 1

E[1- k4 +k31 +1k2 + +k 2 11 ] - [k 2 + KllK 2
2 2+k21
n

1• 2 1 1 2
1 + 2K + 1K +K -- K 2-K K"2 -4 n 31 n 22 211 -n 2 11 2

1 2 1 +K 1 2
2 K 4 n 31 + 22 211 4 +K 2 2 +NK 2 2 ]

2 2
K - K 4K[j K3 1  17-•- K22 + K2113

2o111 22
Coy ' k2 ) Vi[ "] -K 4 N- K22 + 2K3 K11 " (2.2.6)
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Now V(y)and V(y)can be derived in terms of the kappa parameters

of the distribution of u.

V7 ,n-1 2 - 2 2 n-i 2
n ~~ 2 ~J&-) V(k ) + V(k-1) + 2(:i-) Cov(k2 k)

-n-1 2 1 1 +21 -1

(-)ý W- N1) 22]

n-1) 1. 1(.+ 2N- -1) n- - }22

+ 2 1 1-1 2 1 1 + 1
rin njj, - -1K 4NK 22 +2(; t1 K 31 1

"V(y) + 4  + 4 K 2 1 1 ]+ 2{1n)-•2 1 1

+ n-1 I + n-1 ( - .1) I2 (2.2.7)
(.I-)( (n-1)( -1) - 2N-1)nN2

V~2 n- (1.C 2 (z~ 2 . 2 +ni2

V(Y -1-C (r-) (k 2 ) +V(k 1)+ 2(1-C)(-n n ) Cov(k2, k 1)

M (7 (-)n-1 2 V~ Cn-1 2= V(j) + C(C-2)(-) ,- k2  2C(:-) Cov(k2, k2) (2.2.8)

ni
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•1 2 1 1 1

Y)- V() + [B(y)] - C(1 -){C(1 -;K2 1 [C(1-)- 2

1 14 1 11+ [2(C-2)(1 - -)( - -)
ii) nt-i 7-1 N-i n 2

4 1 * K + V(')(2.2.9)N) 31}

It can be seen in (2.2.9) that for ES(y) to be less than V(y)

the bracketed term must be negative. It is also evident that the

bracketed term is a quadratic in C. This makes u•inimizing quite

simple by the usual process of equating the first derivative with

respect to C to zero.

312S(y) 2(C-1)R V1 2 U1n-i 2 C n-• 2 2
-V(k2 )-2 Cov(k 2, k1 ) + 2(2--)

which, when equated to zero and solved for C, yields

- 1 N-n [ K +2) 1 k 4 + 2() 2 2 + 2i 3 1 ] n > 1 (2.2.10)

K2 + (-)K4 + 2(7- - V- 22
N '4 +K 2(~Nl 22,

2.2.3 The square-root estimator for infinite populations

Analysis of these relationships is facilitateA by examining

the limiting equations as N . -. Indeed, if N is moderately large

there is little lose of accuracy by'doing so.
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& V(y) ,4 + 4 + 4K2K + 2,c (2.2.11)
!3 1 2 1 2

li- EMS(y) (1- IrCf.{(1 - 21K
__n n

+ [C(n+l) - 4]K 2 -4K3 K11 + V(y) (2.2.12)

1 ( [" + 2K 2 + 231K
Iira CO - 1 1 2 (2.2.13)

n 4 n-I 2

The disappearing of such terms as K is due to the fact

that 15 '31 K K3K19 etc.

Examination is further facilitated by the ,substitution of the

equivalent central moments of u

K' U

2o

'2 V12

K2 -~_U4•4 "P4 " 3U2' P*4 ("

I•+•l+l
I .... "1 ... ... + ... I " .... ... ... .. ... .. . .. . . ..-. ...... - .. . .. .. .... .. ... .... ,.... .. ...
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The optimum weight becomes, thereby,

1 - 2+ 23

l(n-)4 312 +22P2 2n3(l2]
1 1 • 2 + 12- 2

'E'U P21 n-i 2

2

which ~n +hw 24••"I seiet teta 4+2p

0lj4 -P.2 UP

If~~~~~~ n3 > 1; (h2.s2.1h4)trbtono te uaerottasfre

- ~2 2 n 1
(n-1)ipa + (n -2n+3)u.a

Noting at this point positive if + 2oen

consider the inequality

0 < E[(x-i) 2 E(x-U) 2 2 E(x-u) 4 CE(x-z) 2 2 1 V4 2.,

22hs 2  >2

which shows 1d4 > U 2h It is evident, then, that 1.4 + 2npe oV

if .13 > 0; that is, if the distribution of the square-root transformed

distribution has a positive third moment.

Now, converting FMS(y) to moments about U;

EI'S(y) - l- C (1 - .1) 21 p.I 3u + (C(n+1) 41 U

11 n nL~~~ 2J~ 4 -, 2 ] 2 31j + V(Y)

C~~~ 1 rIi Cn;2) + 2],.A 4 7u.0
]t2h4 + 1Cn 2 3 + v Go

(2.2.15)

It has already been shown that C > 0 when p 0. Inspection of

(2.2.15) further indicates that a large '.13 causes a smaller UKS(Y);

more evidence that a population which is highly skewed to the right
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is best benefitted by the square-root estimator.

2.2.4 The bias of the square-root estimator

The bias of y at C0 is

1 -[K 4 + 2K2 + 3Ki]

0 n 2 - K n(n+l)- + K
K n-i 2
2

- 42  + 2 U ]

[.2 U'2

14 .n+l
S- _3 + n

which decreases with increasing n, but at a very slow rate when n

is small. For example, when n = 2, n(n•l) - 6. In order to double
n-i

P4
this value it is necessary to make n - 10. Unless 2 is small,

even doubling n(n+l) does not halve the bias.

n-i

2.2.5 Types of distributions for which D(S(y) can be made

substantially less than V(7)

The investigations of the types of distribution functions for

which the error-mean-square can be substantially reduced will be

facilitated by the following two theorems.

Theorem 1. The value of C0 is invariant to the scale parameter (a

multiplicative constant).
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Proof: Let y1 be distributed as f(y), and

1

U -

Let

y* by1

so that

-* -u r'-y

Then

_r-by

and similarly

u mEu* z VSu 1-v u

Y* (-0ýk +Cu* 2  b(1-C)y + bd-2,b~

5(Y*) - -* Yk] bEfy -Y] bB(;)
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Then

v<) - V(b;) - b V(y)

and

2 ]2 2
EKS(y*) -b V(y) + b [B(y)] b (DIS(y)]

Therefore, the value of O-S(y*) will be minimized by minizing

D(S(y) which is accomplished by Co.

Theorem 2. The efficiency of EKS(y), (R), is invariant to the

scale parameter.

Proof: Let y1 be distributed as f(y) and V(y') be the variance

of y for a sample of size n.

Then

2

vG*) - V(by) - b2 V(y)

V(y-*) V(byy) b2V(y)

B(Y*) - bB(y)
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Then

A2 b2  2___ 2_

R•. ms(*) . Vy*) + [3(,*) b. V(y) + b2 [B()A2 .
V (7*) Vy--*) V(y*) b 2V(Y) b 2V(y)

Theorem 3. The values of C0 and R are not invariant to the

position parameter. That is, a constant added to

every element of the population will change the

value of C and R.

Proof: Let y P- f(y) such that E(y) - Y and V(y) a 02.

Then, for a simple random sample of size n, E(y) - I and V(y) 2 o2/n.

Letting y* - yi + b, then E(y*) + Y b and V(y*) a o2. Again,

for a simple random sample of size n E(y*) - Y+ b and V(y*) - a 2/n,

that is, there is no change in the variance of the unbiased

estimator.

But, letting u* - and y* - (1-C)3* + Cu* , w see that

E(;*) - (l-C)[Y + b] + CE(k*j2)

- (1-C)(i+b) + Ci[ KI + *2]

n 2 ]

[Y + b] - C[K + b -1 K K2+2 + b 1 _ t]
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- LY + b] - 1[K * + (K2 _ 2 + b]

(A-] l- 1 - I K2 *2 + b]

-[ +b]- C K , 2 -C -(ac 2-i

Therefore, the bias of Y* as an estimate of + b is

A1 2 2~B~K*) .1Ky -* +[( b])+B~*) B~) ln-2 22 1 1

Now, since

-(1-c)3* +C~u*

_ 1C)GY~b) + d*

-(1-C)-y + 4-(1-C)b

- 1C[ )k 2 + klI C!+(-~

ve. have

v4* - 1-C 2(&aL)2V(k2) + (1-C)2V(k2) + C2V(kl2)
VW2-(1-C)(.L 2 1k k 2

(1-C) -- ) Cav (k2, k.j) + 2C(1-C)(R---') ok

2 2* 2C(1-C) Coy(kip kt)
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-(1-C) (=-2~) V(k) +. 2 C(C-2) 2~

2n- 2 + V(k 1  ~ 1)

" 2(1-Q)(=!) Cov(k2, k~ 2C(1-C)(n-1 Cvk 2 k)

n 1(n-- Cov(k1, 1

"+ 2C(1-C)(!--) Cov(k2 k~) + 2C(1-C) 2o~-,k

A 2 c2vk 2) co 2  
w-2V()+ C(C-2) kY-) C Vk* 1 C1C C~it kI

2,C(1-C) n1 ~o. 2 * 2"2

And then

EKS(;*) -V(y*) + By]

V( 2 + 2 V k 2 + 2 C 1 ) 2 2

-Vy) + C(C-2)V(k +C1)*+2CIC Cov(kl, k*

-2C(1-C)(~~ {Cov(k2 k~l) -Cov(k 2, k*
2)

+ [(^()] [2 + (c 2 1 -*) +( *2+b

1 22 2

-2B(y) Cj(-(mc K*) + (2 *2 + b]n2 2 1 1
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Sop

V. 2)*)Cv
DIS(y* EKS(;) + C(C-2)V k) + C2V.(k*2  + 2C(1...) Ck 2 , k*

- 2C(l-C)@ '- ~v12 2) _-o~k 2

+ C22 K*) + (K-2*2) + b]2

12 2- 2B(Y)C>C-n 2 K2 ) + (2.cjl2c) + b]

It can be seen from this equation that the EMS(y*) is not equal

to EHS(y), and that the value of C which will minimize it will be

a function of b. These facts coupled with the fact that

V(y*) - V(y) are sufficient to show that

R* -MS(y*) - ES(y*) •,R

V (y-*) V(-Y)

An example later in this section will further illustrate this

point.

Theorems 1 and 2 will allow investigations of such distributions

as

u8
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by letting 1 - 1. and then apply the results with equal effect

to the sme disttibution with any other value of 0. On the other

hand, distributions that differ by an additive constant will not

have the same optimua -value of C nov will the square-root estimator

have equal efficiencies on these distributions.

In order to investigate the efficiency and utility of the

square-root estimator, three specific families of distributions

were examined. These families were chosen because they represent

a wide spectrum of population forms.

(1) The ganma distributions; f(y) a y e-y, 0 < y <
al

Due to Theorems 1 and 2 any results applicable to this

distributions will also be applicable to

f(y) * 1 a-7/0
at 0•~

for any value of 0.

Making the transformation u - y /2 yields

3
2 2a+l -u

f(u) - u e

from which the first four central moments can be calculated for

various-values of a. We shall consider the distributions generated

by a - 0, 1, 2, and 3. These values are convenient because



23

f (y) me~y

is fairly skewed, while

64 e1• . 3 e-y

is rather symetrical with only a slight positive skewness.

Figures 2(a), 2(b), 2(c) and 2(d) show the relative efficiencies

(R) of a number of different distributions for n - 2, 3, 5 and 10,

respectively. The top four of these efficiency curves (number 1,

2, 3, 4) are of the gima distribution with a - 3, 2, 1 and 0,

respectively. The accuracy to which these graphs can be read is

sufficient for practical purposes. Exact values of R and C0 for

the various distributions are givern in Table 1.

It can be seen that the more eymuetrical the parent distribution

the less gain attainable. Howe-rer, it should also be noticed

that for values of C between 0 and 2.5 there is, in every case,

some improvement over V(G). This is an important fact as it indicates

that the square-root estimator will give an improvement in mean

square error for any value of C between 0 and 2.5 as long as the

parent distribution is at least as skewed as

T3t3

To Illustrate Theorem 3, consider the distribution
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f(x)=e , x > 1

This Is exactly the same distribution as

y) -e-y

except that 1 has been added to each population value. The values

shown below illustrate the differences caused by this shift.

f(y) e-7; y >0 f(x)- e-(x-); x > 1

V ,8862 1 .l,3792

V2 .2146 P2 2

U13 * ,0627 P3 - 3.0688

P.4 = .1495 -94 .0413

C0 - 1.49 C0 -4.11

n 2
R - .84 R- .70

One needs not fear dire consequences because of such

differences, however. If, in each case, a value of C - 2 had been

used, the efficiencies attained would have been .86 and .78,

respectively.
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(2) The Wishart distributions; f(y) T y

This group was chosen in order to investigate distributions

with a bit more skewness than the galma In fact, the square root

transformation of these distributions generate gan-a distributions,

at1 u e-U

g(u) -u e

for which the moments aTe readily calculated.

The effectiveness of the square-root estimator for these

distributions (numbers 5, 6 and 7) for n - 2, 3, 5 and 10 are also

shown in Figures 2(a), 2(b), 2(c) and 2(d). Again it can be

seen that the more skewed parent distributions offer greater gains

through the square-root estimator. Equally important is the fact

that any value of C from 0 to 4 will produce a gain in efficiency

for these distributions with C0 4 2 being the optimum value.

(3) The Pareto distributions; f(y) --ie ; 0<aa< y

for which 0 is a scale parameter.

The Pareto distributions are reputed to be approximate for

income distributions and similar cases, These were included to

show what happens to the square-root estimator in such extraordinary

1 ~/2cases. The square-root transfotmation, u - y produces

g(u) 2" 2au( 2 a+l) u > 1
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Moments higher than 2%-1 do not converge so the distribution

was truncated to force convergence.

In the cases of f(y) y-2 and f(y) - 2y-3 the square-root

estimator makes even greater gains of efficiency over y. It is,

however, at an increasing value of C with the maximum gain

for f(y) 2y- at C A 3. If such a value of C were being utilized

and the distribution was, in reality, a galma with a - 3 (number 1),

there would be a loss of information of approximately 4Z.

2.2.6 General Comments

Inspection of Figures 2 (c) and 2(d) readily illustrate that

for larger sample sample sizes some gains are realized, but two

important facts should be noted. As the size increases the efficiency

of the square-root estimator over j becomes less and the value of

C0 approaches zero for all distributions, indicating that the

primary uses of the square-root estimator are cases where small

staple sizes are necessary.

The following three properties are quite important to the

usefulness of the square-root estimator.

(1) EMS(y) is quadratic in C of the form

h(C) -aC + bC + d; a > 0

(2) EMS(y) V (y whenC 0.
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(3) DIS(y) < V15) only vhan C > 0 for positive populations

that yield a U3 > 0.

The Implications of these properties are:

(1) For positive populations for which U3 > 0 only values

of C greater than 0 and less than 2C will produce a

gain in efficiency and any value of C in this range

will produce a gain.

(2) If it is known that the population being sampled

is at least as skew as one of the standard distributions

a value of C can be established which will guarantee

that the square-root estimator will be more efficient

than y.

2.2.7 A simulation to verify the efficiency of the square-root

estimator

The efficiency curves identified by (14) in Figures 2(a),

2(b), 2 (c) and 2(d) are for a set of data from Cochran [1953]. 0

These data are, actually, a sample of 200 sizes of cities in the

United States in 1920 and are reproduced as Table 2(a). The cities

sizes are grouped into categories of an interval width of 100,000

and the aid-points of the categories were used as representation

of the entire category. To facilitate calculation the sizes have

been coded by dividing by 50,000.
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For this demonstration the 200 cities are taken to be a

population of 200 which has a mean value of 2.66 (2.66 x 50,000)

and a variance of 12.564. Letting u1 be the square root of the

i category size the following central moments of the square-root

distribution were calculated:

U - 1.437

P2 a .595

113 a .953

V4 ' 2.523

It was through the use of these values substituted into equation

(2.2.15) and varying the value of C that the efficiency curve

was generated.

With such a population as this it is not difficult to determine
A

every possible sample of size n - 2 and to calculate y. For

instance, if C - 2 the equation for the square-root estimator is

y- (l-2)y" + 2u2

inY.1 + Y1122
=- ,T(yl+ Y2) + 2 2

= rYl " Y2 "
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The use of C - 2 vas chosen because, by referring to Figure 2(a),

it can be seen that it is a very safe value to use when n - 2.

The frequency distribution of the various values of y are shown

In Table 2(b).

Calculation of

2S (y) ..... 2 66)2

shows that 00y) - 33. That makes the efficiency factor

W =Y 3.352~(s~ya. ~ .525

VG (12.564/2)

which agrees with the theoretical value within rounding error.

The expectation of y calculated from Table 2(b) is

E(y) - 2.073

which makes the bias

B(y) - 2.073 - 2.660 - -. 593

According to equation (2.3.3)

- -I1 1f)..595)3(y) M-C(l--Vc2 in 1 -2t(55 -. 595
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TABLE 2(a). DISTRIBUTION OF SIZES

OF 200 U.S. CITIES IN 1920

Population Size
X50,000 u f

1 1 133

3 1.732 36

5 2.236 11

7 2.645 5

9 3.000 4

ii 3.317 4

13 3.606 0

15 3.873 4

17 4.123 0

19 4.358 1

21 4.583 2

Y - 2.66

2 Original population parameters
a =12.564

U - 1.437

Square-root transformed population parameters
U3 = .953

U4  a 2.523

[Source: Cochran (1953) p.39].
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TABLE 2(b). DISTRIBUTION OF SQUARE-ROOT ESTIMATOR

FOR ALL SAMPLES OF SIZE n - 2 FROM SIZES

OF 200 U.S. CITIES IN 1920

A A A

Sample y f Sample y f Sample y f

1,1 1.000 8,778 5,7 5.916 55 9,21 13.748 8

1,3 1.732 4,778 5,9 6.708 44 11,11 11.000 6

1,5 2.236 1,463 5,11 7.416 44 11,13 11.958 0

1,7 2.646 665 5,13 8.062 0 11,15 12.845 16

1,9 3.000 532 5,15 8.660 44 11,17 13.675 0

1,11 3.317 532 5,17 9.220 0 11,19 14.475 4
1,13 3.606 0 5,19 9.747 11 11,21 15.199 8

1,15 3.873 532 5,21 10.247 22 13,13 13.000 0

1,17 4.123 0 7,7 7.000 10 13,15 13.964 0

1,19 4.359 133 7,9 7.937 20 13,17 14.866 0

1,21 4.583 266 7,11 8.775 20 13,19 15.716 0

3,3 3.000 630 7,13 9.539 0 13,21 16.523 0

3,5 3.873 396 7,15 10.247 20 15,15 15.000 6

3,7 4.583 180 7,17 10.909 0 15,17 15.969 0

3,9 5.196 144 7,19 11.533 5 15,19 16.882 4

3,11 5.745 144 7,21 12.124 10 15,21 17.748 8

3,13 6.245. 0 9,9 9.000 6 17,17 17.000 0

3,15 6.708 144 9,11 9.950 16 17,19 17,972 0

3,17 7.141 0 9,13 10.817 0 17,21 18.894 0
3,19 7.550 36 9,15 11.619 16 19,19 19.000 0

3,21 7.937 72 9,17 12.369 0 19,21 19.975 2

5,5 5.000 55 9,19 13.077 4 21,21 21.000 1

) 41050.357 2.073; B(y) - 2.073 - 2.660 - -. 593
E) - 319,800

?fSE(y) - 3.3
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which again shows agrequent within rounding error. A

2.3 Square-Root Estimators of the Form

y l + -2u C1 + C2  1

If the restriction that the weights sum to one be relaxed

it is, of course, possible to attain even greater gains of efficiency.

Using the definitions in Section 2.2;

in C1(X n)2 ( ) k2+ (2.3.1)

E(;) - C.(- -) K 2 + (C. + C2) E(k2)

" c(I=) - 2 + (C + C2 )[. K2 + K

" C (2 +KC 2 2  +(C +C 2 ) K1

CI(K 2  K1 •:i C2K2 + C•I

1
C1 + (1-C)(K2 + K:1 ) + - C2i 2 + C K

2 11 n 2 2 1 11
Y"+ (1-,C)(K 2 + K 11) + ;- C2K2 1 C111
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C2"-Y + (C1 + -"1)K: 2 + (C1 + C2 -1)l

.~C2

B(y) =-[(i-C 1 -c-)ec +(i-C -C c )K] (2.3.2)
1 7)2 + 1 2 11

V(6) _2 n-) V(k2 ) + (C1 + C2 )2 V(k )

n-i k2) 233
+ 2C1 (C1 + C2) () Cov(k 2 , (2.3.3)

EKS(y) _ V(y) + [B(")] 2

aEKS(Z) . Cn-1 2 V~2 (l Vk2
a- 1 1 + C2) 1

n-i 2+ 2(2C + C 2)(-t) Cov(k29 kj)

C2

- 2[(l - C1 - - ) 2 + (1 - C1 - C2 )K ] (Kc2 + ic1 ]

Equating to zero and isolating C1 and C2 :

n-1 2 2 n-i22C [(') V(k2 + V(k, + 2(- C 2K

+c 2[V(k 1  (**-) Cov(k 2 , kl)
Ic2  2

+ (K- + K 1 )(K 2 + K)] ( (K 2 + 2

I-[T -'•I'•'I •~1 2 11~i•-~ 2v•i . ,. t ..... .11. . ......... . . .,.. ....... .
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3ES()2 n-i 2

C2 K2

-2[(1 - C1 ---- )K 2 + K] K

Again, equating to zero and isolating C1 and C2

2 n-i 2 K 2

CpV(k 1 -n) Cov(k2 k)+ (K 2 + K 1 1 ) ~+ K 11
" II

Lettin

ta

2 2 2+c2IV(k• + (7-• K~l2 (K + Kl)- + Kll

Letting

E1 (K2 + K l2

K2
E2 = (K 2+ )(- + Kll)

A.nl2 +i n f 2 21 -
-2( k2) + El

2 n-iB - V(k 1 ) + (-) Cov(k2,) + E

2 K2 )2
Dt V(kn) + + K

then
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AC1 + BC2  E

and

SBC + DC E
1 2 2

Solving simultaneously yields

DE1 - BE2
C1 2 (2.3.4)

AD B

SAE2 - BE1

C2 B2  (2.3.5)

All of the equations pertinent to the general square-root

estimator are complex and extremely difficult to analyze critically.

However, the calculations for specific distributions are quite

easy with the aid of a computer, so tables have been prepared

showing the results of applying the general square-root estimator

to the thirteen standard distributions.

Evaluation of the optimau values of C and C2 appear in

Table 3. It is immediately obvious that the values are quite

dependent upon the form of the distribution being 'sampled. For

example, C2 - 0 for all of the gmma distributions, while C1 = 0

for all of the Wishart distributions. It is also interesting
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to note that C1 + C 2 1 for all forms and sample sizes of the

Pareto distribution.

Table 4 is a comparison of the optimum efficiency ratios of

the two forms of the square-root estimator. The efficiency ratio

of the general square-root estimator is, of course, better in all

cases if the optimum values of C and C2 for the specific distribu-

tion are being used. If the specific type of distribution is

unknown it would not be possible to incorporate "workable" values

of C1 and C2 that would be safe for all distributions.

The use of the general square-root estimator should, therefore,

be restricted to those cases where there is a priori knowledge

of the form of the parent distribution.
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3. THE CUBE-ROOT ESTINATOR

3.1 Introduction

When a population consists of both positive and negative

numbers, the square root estimator is, of course, impossible to

use. The cube root of a negative number is defined so an estimator

-3
of the form y - (1 - C) y + Cv is suggested.

3.2 Definitions

1

(a) vi y3

in

n
(b)Ev

(c) k 1 v

1 2
(d) k2 - _ E (v - v)

1

n

(e 3 "(n-1)(n-2) i(v -v)

(f) k "1-- {(n 3 + n 2)S4 4(n 2 +n)S3SI 3(n 2 -n)S 2

2 1+ 12n $2SI -S~
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(8) k 5 "-4 {(n4 + 5n 3 )$S - 5(n 3 + 5 4S 1 - 10(n3 n 2 )1S

+ 20(n 2 + 2n)S3S2 + 30(n 2 60S S3 + 24S5 }

(h) k6 " g {(n 5 + 16n 4 + lln 3 - 4n2)S6 I
6 n (6 14

4 3 2 23 22

- 6(n4 + 16n3 + ii. - 4n)SsS1 - 15n(n - 1)2(n +- 4)S 4 S2

- 10(n4- 2n3+ 5n2- 4n)S3 + 30(n +9n2+ 2n)S 4s 1

+ 120(n3 _n)SSS + 30(n 3 _ 3n + 2)s3

n)3 2S1  2nS

-120(n+ 3n)S S,- 270(n2 - O)S S, + 3602Ss- 120S I

n

(i) S E (v

3.3 Derivations of Bias and Error Mean Square

The cube root estimator will be used in the form

y " (1 - C) y + 63 with y being expressed in terms of k statistics

of the u 's.

Since k - (n-l)(n-2) - i) it is possible to expand
the last term and solve for v -n-i ) (n-2) k3+ 3(n-)k1k2 + nk3

Evi -+ 3(-l:k

I
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Ytn Zvi k)3+ 3 k k 2 +k

so,

(IO n 3+3Rnl~l2klCk

C - (R) k + 3klk2] (3.3.1)

or

3L( y - C( )( )k3 + 3(2---)k•k1  + (3.31a)

E(y) " -C(E-)[(--2)3+(k2 + 3.3.2)
ynn 3 2)~F12 J

n-i1 n-2 + 3 21+

-- -1 1ic + 3sc2ic1

3]
(Y) ft n-i (a- + (3.3.2)

- n-i 2 n-22~ +-1V 3
VGy) M =--) (-F)2V(k 3 ) + 9(R-ý-) k2 k)+V(k k)

1 -2 n- -2Cokk3

(-)Cov(k3 k kl) +2-) Cv1 3  1

* 6('-l)Cov(k 3 k k) (3.3.3)
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+() V(1 )-(.- )2 ( 2 Vk3) + 9(1 C C) 2 ( R`o 2V (kkk
11)W 1 c n 3n 2)

3 2 n-1 2 u-2V(k1 ) + 6(1 - C) Cov(k 3, k2k))

n-iS-[ 2 3
+ 22(1 - C) (=-) ( 2- Cov(kk k k)

+ (- )Cov~kl k k1 ) (3.3.4)

EuS(y) h V(y) +zl [B(y)d

aDIS(Y) 2(C _ 1)(n-I)2V(k )+ I8(C - )(!L--) 2 Vkk
ac t2 3 n (~ 2)

ni 2 U-2 C v
+12(C - 1) (-u) (=-)C k 3 1 k 2k 1

n-i n- 3 n-1 3
2(-n)(Su-2)Co 31 k 1  6(E---Cov(k1 , k 2k1 )

+C -1 )2 n1 +3 2
(:n- n !-'3 '21cl

Equatizng the derivative of EMS (y) to zero and solvin~g for C

yields

n-2 3 3
A+(=-,.-)Cov(k 3,ki)+3Cov(ki,kk)

0 ~~+(n-l, 24 [ +3

where
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A )V~k,) +9(E-~-,V~k k + 6(R---)(E-.i-)Cov(Ic3  k l

In order to evaluate DIS(y) it is necessary to determine

those variance and covariance terms appearing in (3.3.3), (3.3.4),

and (3.3.5). The derivations will be for infinite populations only.

Vk E(k) 2 [E(k )] E(k) 2 K

1 9 n+8 6n 2

n 6 + n-i k42 + k 33+ (n-l)(n-2) k 22 2 ] 3

1 +-2- K 2+ 6n
n6 n-i n-i ~3  (n-i)(n-2) 2(336

V(klk) - E(kýk2) _ [kk2)]

2) 2k 2)

1 2(__k k+2 + +.I k
2n2(n-) 433 n 411

+ k + +!i + n+l kn(n-1) n(n-1) k222 n-i 2211

_ [E(- k3 + k21)]

"K +6 +-• KK+ 3n+_ K K + 2(n+) 2 +1 2
n n n 2(n-i) n 2 (n-i)

+ K2K + n+l 3 +n+K2 2n(n-i) 3 +nn-i) n-I 2K1



50

n 3 21

1 C + 2 + 3n+1 + n+3 2 1 2
6 "2 5•51 2 (n-1 4 2 2 3 n 41nn2 (n-i) n2 (n-i) i 4

+ 2(n+3) K K K + n+l ,C3 + 2 K2 22
n(n-1) 3 2 1 n(n-1) 2 n-i 121".

3 6 3 2
V(k1 ) - E(k1 ) - [E(k 1)] .

Using techniques similar to those used in (22) and (23), this

yields;

3 1 1 6 ~ 15 92 15 2V(k 3) + -L {-K K6+•w5< + L5 K4 K + -1 K 2 + 2. K4K 2
n n n n n

54 15 3 18 3 36 22 2 42 3 32 1 2 -2 2 n 3KI +n1(2gl+912KI} (3.3.8)
n n

cov(k 3, klk2 ) - E(k 3, klk2 ) - E(k 3 )E(kIk 2 )

K +6 K + 1 K K + 6 2
"2 6 n 51 n(n-1) 4•2 +n(n-1) 3n

6+ 6 3K2KIK• (3.3.9)

i ~ l i I I I ... I +- i n - 3i i 2• m i . ... . .. .. • .........
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3 3 3Cov(k 3  k 1) -E(k3k1 ) -E(k3)E(kk1)

1 K _LKK +'K K+ KK 2(3.3.10)
3 6  2 5 1 2 4 2 2

S nn n n
3 4 3Cov (k, k2 , Ic) =E(kjk 2) - E(k Ik 2)E(k1 )

1 + 4 K K + K 2 + K K
2

4 6 3 5 1 3 4 2 3 3 2 4 1
nI nn n n

+122 3 3 3 3 3 2 2
+ K KK2 +--2 K2 +n- KK +-n 22 " (3.3.11)

n2 ~3 2 1 2 2 n 3 1 n 21n ni

3.4 The Bias of the Cube-Root Estimator

B(y) . _C(n---)-1 + 3K K 1
_n n 321c

is a function of the first three moments of the cube root distribu-

tion and is, therefore, sensitive to large values of these

moments. The third moment of the cube-root distribution is apt

to be small and cause little problem. The effect of 3K2 K1 is not

so easily dismissed. The effect of a non-zero mean on the' bias

could be severe, especially since the mean square error is increased

by the square of the bias.
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3.5 Types of Distributions for which EKS(y) Can

be Made Substantially Less than V(y)

Consider the distribution of errors that would be encountered

in a corporate account audit. Most, by far, of the account entries

would be correct, i.e., with zero error. A small portion would

have errors and these errors would be both positive and negative.

One of the more onerous duties of an auditor is to determine the

average amount of error in such accounts in order to detect if

the total is substantially in error. Since he is sampling for a

rare attribute (error), his sample size usually must be quite

large in order to be effective. An estimator which would contain

the same amount of information with a smaller sample size would

be valuable.

In order to evaluate the effectiveness of the cube-root

estimator in such a situation, three types of error distributions

will be considered using the following definitions:

P - proportion of population containing error.

S - proportion of the errors which are negative.

(1) The rectangular distribution of errors,

f(y) -PS -1 < y < 0

-1-P y-O 0

-P(l- S) o y<l .
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in this case we are assuming that the positive errors of various

magnitudes are equally likely and the negative errors of various

magnitudes are, likewise, equally likely.
if

If 1

V =Yi

then
3

g(v) =3PS v -1 <_v < 0

=1 -P v=O

=3P(1 - S) 0 < v < 1

Figures 3(a), 3(b), and 3(c) illustrate the gains in efficiency

which can be attained for P - .02, .10, and .20, and for S - .95

and .45 at each of these levels of P. The efficiency factor (R) is

shown as a function of C.

Extremely large gains are possible in the populations which

are only slightly unbalanced. For small sample sizes large gains

are attainable even when 19% of the population is in error to one

side of zero while only 1Z are in error on the other side. For

larger sample sizes, however, the possible gains in efficiency

become much smaller and the range of values of C which will allow

gain becomes much more critical.
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(2) The uniformly decreasing distribution

f(y) 2PS(1 + y) -1 <y < o

(1 -k) y W 0

=2P(1 S)(1 y) 0 < y_< 1

This distribution is similar to the rectangular distribution

except that the probability of error decreases with distance from 0.

Letting

3-
Vi = Yi

2 3
g(v) - 6PSv (1 + v3) -1 < v < 0

"1-P v O

2 3=6P(I S)v2(1 v3 0 < v < 1

Comparison of Figures 3(d), 3 (e), and 3(f) shows the same

results as occurs in the rectangular distribution except that the

imbalance does not have as great an effect on the efficiency ratio.

This, of course, is because there is a smaller effect on the first

three central moments.

(3) The parabolic distribution of errors

f(y) -3PS(l + y)2  -l < y < 0

-1 -P y-O

-3P(l - S)(- y) 0 < y < l
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Figure 3(d). Relative efficiency (R) as a function of the weighting

constant (C) f or the cube root estimator. Uniformly decreasing

distribution of errors, n - 5
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The parabolic distribution is similar tc the rectangular and

uniformly decreasing distributions except that it reduced the

probabilities of larger errors by the square of the distance from

zero.

Letting 1

g(v) - 9PS(v + 42 -1 < v < 0

l-P v-O

- 9P(1 - S)(v - 0 < v < 1

Figures 3(g), 3(h), and 3(t) illustrate once again the same

basic results shown by the rectangular and uniformly decreasing

distributions. The better the balance, the greater the gain.

The similarity in the results of these distributions serves

to indicate that for small sample sizes there is a value of C

which will allow the cube-root estimator to be used on a class of

distributions. For larger sample sizes it is important to have

some idea of the amount of imbalance before choosing C. It is

possible to estimate P and S from the sample, a posteriori, and

to choose C from the results. This will change the mean square

error of the estimator but it will allow some hedging against a i

loss of efficiency.
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Figure 3(i). Relative efficiency (R) as a function of the weighting
constant (C) for the cube root estimator. Parabolic distribution of
errors, n - 50
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3.6 The Use of the Cube-Root Estimator to Estimate

Changes in the Mean

Small sample surveys are often used to detect if the mean of

a population has changed over time or after some treatment.

Consider, for example, a population which has previously been

surveyed in total or, at least, by a very large sample. Then at

a later date a small sample is taken to detect if the mean has

changed. Letting uo0 be the prior mean of the population, Xi be

an observation made in the later survey, and X- y0 - Y1 " Thea

Yi is distributed identically with X with the exception that

"Yx 0.

Utilizing the cube-root estimator on the sample values of y

would produce an estimator • (1 - C)y + c;3 with the properties

that have previously been described. If the values of the first

six moments of the cube-root distribution can be estimated by using

the information from the original survey it is possible to

predetermine a value of C which is apt to give good results.

Further, if the distribution is fairly symmetrical the bias and

mean square error of the cube-root estimator may be quite small

compared to y.

3.7 A Simulation to Verify the Efficiency of the

Cube-Root Estimator

In order to verify that the cube-root estimator does, indeed,
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TABLE 5. DISTRIBUTION OF ERRORS IN 100 AUDITED

ACCOUNTS OF A WHOLESALE FIRM

Error Size ($)

y v f

0 0.00000 90

-. 52 -. 804145 1

.80 -. 928318 1

-1.00 -1.000000 2

-2.00 -1.259921 1

-3.00 -1.442250 1

+0.10 +0.464159 1

+0.40 +0.736806 1

+1.00 +1.000000 1

+10.00 +2.154435 1

Y - .0318

2 Original population parameterso-1.1698

V - .0016

P2 - .1553

"U3 w .0403 Cube-root transformed population parameters

P4 - .3319

U .3865

116 -1.2169
M6)
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attain the claimed efficiencies, a set of account errors was

obtained from the auditing records of a wholesaling firm. The

data shown in Table 5 are a sample of 100 account errors, but

they will be used as if they constitute an entire population.

Referring to Figure 3(a) it can be seen that C " 1 is both

safe and likely to produce a small mean square error when n - 3.

There is the added advantage that the cube-root estimator is quitne

simple to calculate when the weighting constant is equal to one.

Equations (3.3.2) and (3.3.4) reveal that when n - 3 and

C=i

B(y) - .0302

V(y) - .0101

and

EKS(y) - .0110

Through the use of an electronic computer every combination of

the one hundred values taken three at a time were picked and y

was calculated for each combination. Calculating the moments

of these actual sample values yielded;

E(y) a .00144

B(y) - .0318 - .0014 = -. 0304
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V (y) -. 0072

EKS(y) = .0081

The error mean square calculated from the actual sample values

is smaller than equations (3.3.2) and (3.3.4) predicted indicating

that the finite population correction, which was ignored in the

development of the dube-root estimator, has more influence in

the case of the cube-root estimator than it has in the case of the

sample mean.
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4. USES OF ROOT-ESTIMATORS IN STRATIFIED SAMPLING

4.1 Introduction

Stratified random sampling is a well known and commonly used

sampling technique wherein a random sample is drawn from each

of the mutually exclusive strata (or subpopulations) of the

population. This technique is particularly useful on populations

which are naturally subdiviýed into subpopulations, each of which

are more homogeneous than the whole. In such a case each stratum

mean is estimated by the mean of individual observations drawn

from that stratum. If the stratum sizes are known then the

stratum totals are estimable, and through them the population total

and mean a~e estimable. Estimates of a population mean or total

obtained in this fashion have a variance that is smaller than

the variance of estimates obtained from a simple random sample of

the whole population. When each of the stratum means can be

estimated with smaller mean square error through use of a biased

estimator, it would seem that these biased estimators could be

used to good advantage in the estimation of the population mean.

As is shown below, this is not the case.

4.2 Definitions

(a) L - number of strata in population

(b) Ni - number of elements in the ith stratum

I
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L
(c) LN = N = total number of elements in population

(d) ni size of sample from the ith stratum

(e) Zni = n = total size of sample

Ni

LN E Y L
V, NYi',i

(8) Yt = Y ,2' "''' Yi

L Ni I L Nii

AL
(1) Y - Zwvy1i

(J) B(Y) E(Y) Bias of Y as estimator of

(j) B(Y - E(Yl) - YI Bias of Yi as estimator of Yl

(k) B w Bias of yas estimator of Y

4.3 The Bias and Error Mean Square of Y as Estimator of Y

The bias oi Y as an estimator of Y is

_ L *L N L
B(Y) - E(Y) -Y- E[w y i -7" vi(Yi + Bi) - N i

N L
" E(W i - t)Yi + E.B..

The variance of y is, then

V(y) -V(EZviyi) ()

1 1I
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and
2 N --

DIS(Y) -V(Y + [B(Y)] -Ew _V(; + [E(w1  -Y + EwiBi

Ni
It is apparent that letting w1 - -i will reduce the error mean

square to a minimum under the given conditions, so that

Ni2  LN 1
2  2

MS (Y) - 7' -V(y ) + [z iB]
N 2N1 1 N 2

A * 2A
If we now use the relationship V(y) - EKS(yi) - (B) the ENS(Y)

becomes

Nj2 2  2 2
N2 [iEMS(yt) B + (E -NBi]

1- 2 1

N N

1 2.AL L

1or LY 2 tL

+ 0

L ~

2 1 N- ' i i'.1
for Yi, then

1 2-
EKSYst 2 E i ~y V1 st since all B i.0
N Ii

This makes R EMSM 1  - + i
V~yat) EN VGZN'Vo

1
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which is a most unfortunate result. The second term is the sum

of all the L(L-1) cross-products of the N B 's divided by EN.V(Yst)
iia

which contains only L terms. In ;irder to clear away some of the

confusing factors, assume that each stratum has the same number

of elements and equal variance. Then each Ni - N/L and

2 2I- N

-1 (L (S(y) + (L 1)B

and

L N2
V(Y )iE - 1G -Gat 2 -L "' L2"y

N 1L

This, then, makes
2

R + (L-1) B
V(y) V(Y)

Therefore, if the biased estimator y is sufficiently efficient

compared to y and L is small, the resultant overall efficiency may be

comparable. However, as L increases V(Y) is certain to become

large enough to cause a reduction in efficiency below that of Y.

It is easily seen, therefore, that estimators which are biased

are rather dangerous to use for estimating the population mean or

total when utilizing stratified random sampling. This is especially

true when all BiIs are in the same direction as is the case with

the square root estimator.

,n" n" m n' " " -' --'•nn mnnnm aul nualli~ m ~ in n .. . •.......:•,. '• ....... .. ...... , . . .. , '' •' •,, ....................... .... i..
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In the case of the cube-root estimator it is possible for the

bias terms to be positive for some strata and negative for others.

However, the purpose of such a survey, usually, is to detect a

consistant bias in error, the very condition which will cause the

cube-root error to be inefficient.

Root-estimators, therefore, are not recommended for use in

estimating population means or totals in stratified sampling. They

are recommended for use in the estimation of strata means and

totals when the ni are small and the distributions within strata

are apt to be positively skewed.

* I

I

I

i l ... . . . I • • "1'• . .... .. .! .. ... .. .1 .... .. ' i . .. i . .... i ~i "i f . .. .l :•u • i "••,• •,: i • "
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5. CONCLUSION

5.1 Summary

The square-root estimator of the form y (1 C)- + 2C

- Y', - has been developed for populations consisting of all

positive numbers. It was found that for small sample sizes from

populations with a large positive skewness there is an optimum

value of C (C0 ) which will make the mean square error of y

smaller than that of the sample mean. Indeed, it was found that

any value of C between zero and 2C0 will have this effect to some

extent and that, for a particular sample size, values of C can

be determined which will produce smaller mean square errors for

a wide class of positively skewed distributions.

- - -2The general square-root estimator of the form y - C1y + C 2u

was also investigated. This form was found to produce improvement

in the mean square error at the optimum values of C and C2.

The wide variability in the values of C1 and C2 between types of

distributions made the use of the general square-root estimator

a bit unsafe if the form of the distribution is not known a

priori.

The cube-root estimator of the form y - (1 - C)y + CV,

1/3vi -i , was developed for use on populations consisting of

both positive and negative values. It was found that the mean

square error of this estimator is quite sensitive to asymmetry

in the population. However, for populations of errors which are

. . . .. . . ....
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predominantly zero the cube-root estimator performeý quite well

in comparison to y. It also showed promise for the estimation

of small changes in the means of populations for which a previous

large sample survey has established good estimators of the higher

moments.

An investigation of the use of biased estimators in

stratified sampling indicated that root-estimators can be used

for the estimation of within stratum means and totals with good

results. They should not be used for estimating the population

mean or total in stratified sampling, however, because the bias

accumulates in the total and overcomes the gains made within the

individual strata.

5.2 Future Research

Although the square-root and the cube-root estimators show

promise for practical application in small sample estimation,

there are several aspects of the problem which need further

investigation. Of primary importance is a better description

of the classes of distributions for which the root estimators

are advantageous. The sampling practioner could make use of a

more complete set of model distributions than those exhibited

in this paper. It also appears likely that the square-root

estimator could be improved by the addition of a constant to

populations which have values between zero and one.
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This paper is, admittedly, but a beginning in the investigation

of biased estimators wbich exhibit a reduced mean square error.

However, we are hopeful that the properties that have been

determined for these estimators will encourage further investigation.

-~i

,i

I

I

I
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